
A F~ A)~ ATON AGEForm Approved
Pbic~ A D - 23 82 D W response, including te time for revis" ingtuncIme, searching eisting data sources gat"evi ary,'-iaa~frw',g ft1 dao,

rieedsi I 111 II *n f ~ ~f~li estirrate or anyi other aspect of this collection of information, including sugestlions for rsduckng tis burden, to Washirgin
lleadq so111~IIII iili ii 11 I j n Davis HigWay. Suit 1204. Artrgon. VA '20-4W02. and to the Office of intformation and Regulatory Affiss office of
Manag 1 1111111 liiIII11111 tl ~t11111111111 1Ill1111111
1.AG -DATE 3. REPOPT TYPE AND DATES COVERED

IFinal 09 Sept 90 to 03 Mar 91

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Meridian Software Systems, Inc., Meridian Ada, Version 4.1, Apple Macintosh 11
(Host & Target), 900909W1 .1 1038

6. AUTHOR(S)

Wright- Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validdtion Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 AVF-VSR-398.0491
Wright- Patterson AFB3
Dayton, OH 45433
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGMNjWIG NCY

Ada Joint Program Office REPORT NI
United States Department of Defense
Pentagon, Rm 3E1 14 FL1CT
Washington, D.C. 20301-30810
11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT 112b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Meridian Software Systems, Inc., Meridian Ada, Version 4.1, Wright- Patterson AFB, Apple Macintosh 11 System 6.0.3 (Host
& Target) ACVC 1. 11.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16.___PRICE__CODE_
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1 815A, AJPO. 16PIECE

17 SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT
OF qEP ,'fT I OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED__________
NSN 7540-01-280-550 Standard Form 298, (Rev 2-89)

Prescribed by ANSI Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 09 September 1990.

Compiler Name and Version: Meridian Ada, Version 4.1

Host Computer System: Apple Macintosh II
System 6.0.3

Target Computer System: Apple Macintosh II
System 6.0.3

Customer Agreement Number: 90-07-23-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900909W1.11038 is awarded to Meridian Software Systems, Inc. This
certificate expires on 1 March 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson

Accession For

Technical Director -NIS GRA&I
ASD/DTIC TAB
Wright-Patterson AFB OH 45433-6503 UnD ncA

Justification

Ada V i 6i' rganization Distribution/

Direc or, puter & Software Engineering Division Availability Codes

Institute for Defense Analyses -- Avail and/or
Alexandria VA 22311 Dist Special

AdrJoint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

91-007789152 l 1l 1111Ii I I1

91 ,5 29 r,4,llilllllllII I

AVF Control Number: AVF-VSR-398.0491
8 April 1991
90-07-23-MSS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 900909W1.11038
Meridian Software Systems, Inc.

Meridian Ada, Version 4.1
Apple Macintosh II => Apple Macintosh II

Prepared By:
Ada Validation Facility

ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on 09 September 1990.

Compiler Name and Version: Meridian Ada, Version 4.1

Host Computer System: Apple Macintosh II
System 6.0.3

Target Computer System: Apple Macintosh II
System 6.0.3

Customer Agreement Number: 90-07-23-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
900909W1.11038 is awarded to Meridian Software Systems, Inc. This
certificate expires on 1 March 1993.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASD/SCEL
Wright-Patterson AFB OH 45433-6503

Ada i -ion Organization
SDirrcto Computer & Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Meridian Software Systems, Inc.

Ada Validation Facility: ASD/SCE,, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Meridian Ada, Version 4.1

Host Computer System: Apple Macintosh II
System 6.0.3

Target Computer System: Apple Macintosh II
System 6.0.3

Customer's Declaration

I, the undersigned, representing Meridian Software Systems, Inc.. declare that Meridian
Software Systems, Inc. has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this declaration. I declare that
Meridian Software Systems, Inc. is the owner of the above implementation and the certificates
shall be awarded in the name of the owner's corporate name.

~64 x & Date: 'h
Stowe Boyd, Vice Presiden of Research and Development
Meridian Software Systems,1 Inc.
10 Pasteur Street
Irvine, CA 92718

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT3-1
3.2 SUMMARY OF TEST RESULTS3-1
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83J using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
JPro90J. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validati-n test results should be
directed to the AVF which performed this ,alidation or to:

Ada Validation Organization
Institute for Defense Analy'ses
1801 North Beauregard Stre
Alexandria VA 22311

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint Program
Office, August 1990.

JUG891 Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes:
A, B, C, D, E, and L. The first letter of a test name identifies the class
to which it belongs. Class A, C, D, and E tests are executable. Class B
and class L tests are expected to produce errors at compile time and link
time, respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circuivent a test
objective. The package SPRTl3 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checkea by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple. :crately compiled units. Errors
are expected at link time. and execution i7 Mtrenpted.

In some tests of the ACVC. certain macro strings have to be replaced by
implementation-specific values -- for example. the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications. additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The m-difications required for
this implementation are described in setiri

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization ccnsists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see sec*4on 2.1) and,
possibly some inapplicable tests (see section 2.2 and [UG891).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consist4'ng -f -ne or more computers and
System associated software, that -,-~ ,-mm-n storage for all or

part of a program and als- for all or part of the data
necessary for the execution -f the program; executes
user-written or user-designated programs; performs
user-designated data manipulation. including arithmetic
operations and logic operations: and that can execute
programs that modify themsel're: during execution. A
computer system may he a fand-lnne unit or may consist of
several inter-connected ,in i-

1-3

INTRODUCTION

Conformity Fulfillment by a product, process or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test ibjective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from ei'aer the AVO or the AVF. The
publication date for this list of withdrawn tests is 02 September 1990.

E28005C B28006C C34006D B41308E C43004A C45114A
C45346A C45612B C45651A C46022A B49008A A74006A
B83022B He3022H B83025B B83025D B83026B C83026A
C83041A B85001L C97116A C98003B BA2011A CB7001A
CB7001B CB7004A CC1223A BC1226A CC1226B BC3009B
BDlB02B BDlBO6A ADIB08A BD2AO2A CD2A21E CD2A23E
CD2A32A CD2A41A CD2A4IE CD2A87A CD2BI5C BD3006A
CD4022A CD4022D CD4024B CD4024C CD4024D CD4031A
CD4051D CD5111A CD7004C ED7005D CD7005E AD7006A
CD7006E AD7201A AD7201E CD7204B BD8002A BD8004C
CD9005A CD9005B CDA2O1E CE21071 CE2119B CE2205B
CE2405A CE3111C CE3118A CE3411B CE3412B CE3812A
CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by ISO an-! 'hc AJPO known as Ada
Commentaries and commonly referenced in th frvmpt AI ddddd. For this
implementation, the following tests vere ,1-ermioie! to be inapplicable for
the reasons indicated; references to Ada (7ommentaLies are included as
appropriate.

2-i

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) CJ5621L..Z (15 tests)
C45641L..Y (14 teits) C46012L..Z (15 tests)

C35702A, C35713B, C45423B, B86001T, and C86006H check for the
predefined type SHORTFLOAT.

C35702B, C3571LJ, B86001U, and C86006G check for the predefined
,ype LONGFLOAT.

C35713D and BF*JO1Z check for a predefined floating-point type
with a name -ner than FLOPT, LONGFLOAT, or SHORTFLOAT.

A3580iE checks that FLOAT'FJRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation that range exceeds the safe numbeLs and must be
rejected. (See section 2.3)

C45423A, C45523A, and C45622A check that the proper exception is
raised when operations results lie outside of the range of the
base type if MACHINE OVERFLOWS Is TRUE for -,arious floating-point
types; for this implementation, MACHINEOVERFLOWS is FALSE.

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point
operations for types that require a SYSTEM.MAX MANTISSA of 47 or
greater.

D64005G checks limits of the compiler (the depth of recursion
caused STORAGEERROR to be raised).

C86001F recompiles package SYSTEM, making package TEXT 10, and
hence package REORT, obsolete. For this implementation, the
package TEXTIO is dependeut upon package SYSTEM.

B86001Y checks for a predefined fixed-point type other than
DURATION.

CA2009C. CA200F. BC32C12C. and F,-',- inzrntiate generic units
before their boJies are cnmpi]- -h0- implementation _r2ated a
dependence on generic urits as al]m.'ed by AI-(,'(O"8 and AI-O0530
such that the compilation of the generi ,init bodies makes the
instantiating units obsolete. (See se.i-n 2.3)

LA3OOA..B (2 tests). EA3Y),,'. .P K? ".. and CA3OU4E..F che-k
for pragma INLINE for pjo ,- , .'i cn!.

IMPLEMENTATION DFPRNDENCIES

CD1009C uses a representation clause specifying a non-default size
for a floating-point type.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use
representation clauses specifying non-default sizes for access
types.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

AE2101H, EE2401D, and EE240G use instantiations of package
DIRECT 10 with unconstrained array types and record types with
discriminants without defaults. These instantiations are rejected
by this compiler.

The tests listed in the following table are not applicable because
the given file operations are supported for the given combination
of mode and file access method.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL_10
CE2102F CREATE INOUT FILE DIRECT IO0-
CE21021 CREATE IN FILE DIRECT_10
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN INFILE SEQUENTIAL O
CE21020 RESET IN FILE SEQUENTIAL 10
CE2102P OPEN OUT FILE SEQUENTIAL 10
CE2102Q RESET OUT FILE SEQUENTIAL-IO
CE2102R OPEN INOUT FILE DIRECT1 0
CE2102S RESET INOUT FILE DIRECT 10
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUTFILE DIRECT-IO
CE3102E CREATE INF ILE TEXT IO
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT 10
CE31021 CREATE OUTFILE TEXT-IO
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN I"T FILE TEXT-IO

CE2107B..E (4 tests). CETIh 7L. aFH'F and CE2111D attempt to
associate multiple internal Lile -<ih the same external file when
one or more files is -ritinv Hi ,reni~l files.

,,). m mmn nn m n mnlu | uunln ul nINIm nINNNN

IMPLEMENTATION DEPENDENCIES

CE2107G..H (2 tests), CE211OD, and CE2111H attempt to associate
multiple internal files with the same external file when one or
more files is writing for direct files. The proper exception is
raised when multiple access is attempted.

CE2203A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for SEQUENTIALIO. This implementation
does not restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of the
external file is exceeded for DIRECT-IO. This implementation does
not restrict file capacity.

CE3111B, CE3111D..E (2 tests), CE3114B, and CE3115A attempt to
associate multiple internal files with the same external file when
one or more files is writing for text files. The proper exception
is raised when multiple access is attempted.

CE3304A checks that USE ERROR is raised if a call to
SETLINE LENGTH or SET PAGE LENGTH specifies a value that is
inappropriate for the external file. This implementation does not
have inappropriate values for either line length or page length.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST. For this implementation, the
value of COUNT'LAST is greater than 150000 making the checking of
this objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 9 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way experted by the original tests.

B22003A B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO; the compiler rejects the use of "u-- rnge FLOAT'FIRST..FLOAT'LAST
as the range constraint of floating-piit '"p- doerlaration because the
bounds lie outside of the range of safq n,mht - (-f. ARM 3.5.7(12)).

CA2009C, CA2009F, BC3204C. and BC32! 5D -vere ciided inapplicable by
Evaluation Modification as directed by the AVO. Because this
implementation makes the units with instantiati-ns obsolete (see section
2.2), the Class C tests were rejected at linil time and the Class B tests
were compiled without error.

2-4

IMPLEMENTATION DEPENDENCIES

EA1003B was processed with the option "-fI" so that code would be
generated for all of the legal units of this test file. Without this
option, the -ntire compilation would have been rejected due to errors
within only some of the units (which is also an acceptable result).

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical information about this Ada
implementation system, see:

Technical Support
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

For a point of contact for sales information about this Ada implementation
system, see:

Jim Smith
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC 'rzinn if it processes each test
of the customized test suite in accordance v.,ith the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the AMV' jPro901.

3-1

PROLUSSING INFORMATION

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

Total Number of Applicable Tests 3807
Total Number of Withdrawn Tests 74
Processed Inapplicable Tests 88
Non-Processed I/O Tests 0
Non-Processed Floating-Point

Precision Tests 201

Total Number of Inapplicable Tests 289

Total Number of Tests for ACVC 1.11 4170

All I/0 tests of the test suite were processed because this implementation
supports a file system. The above number of floating-point tests were not
processed because they used floating-point precision exceeding that
supported by the implementation. When this compiler was tested, the tests
listed in section 2.1 had been withdrawn because of test errors.

3.3 TEST EXECUTION

Version 1.11 of the ACVC comprises 4170 tests. When this compiler was
tested, the tests listed in section 2.1 had been withdrawn because of test
errors. The AVF determined that 289 tests were inapplicable to this
implementation. All inapplicable, tests were processed during validation
testing except for 201 executable tests that use floating-point precision
exceeding that supported by the implementation. In addition, the modified
tests mentioned in section 2.3 were also processed.

Diskettes containing the customized test suite (see section 1.3) were taken
on-site by the validation team for processing. The contents of the
diskettes were transferred to this machine over a serial line from an IBM
PC (or clone) machine (onto which the tests were directly loaded) using a
program called LapLink (Mac version).

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Testing was performed using command script7 r,-'ided by the customer and
reviewed by the validation team. See App-l-i r f'ir a complete listing of
the processing options for this implement.4,--l It also indicates the
default options. The options invoked explicitly for .alidation testing
during this test were:

3-2

PROCESSING INFORMATION

Switch Effect

-fE Generate error file for the Ada listing utility
(alu).

-fI Ignore compilation errors and continue generating
code for legal units within the same compilation
file (for test EA1003B).

-fO Suppress "added to library" and "Generating

code for" information messages.

-fw Suppress informative warning messages.

-c Produce continuous form Ada listings (no page
headers).

-p Obey PRAGMA PAGE directives within the program
even though the -c flag says not to generate
page breaks.

-s Output Ada listing to the standard output
file instead of to a disk file.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG891. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN L3N--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input line
length.

Macro Parameter Macro Value

$BIG IDl (1..V-1 => 'A', V => '1')

$BIGID2 (l..V-1 => 'A', V => '2')

$BIGID3 (l..V/2 => 'A') & '3' &
(l..V-l-V/2 => 'A')

$BIGID4 (1..V/2 => 'A') & '4' &
(1..V-l-V/2 => 'A')

$BIGINTLIT (1..V-3 => '0') & "298"

$BIGREALLIT (1..V-5 => '0') & "690.0"

$BIGSTRING1 '"' & (1..V/2 => 'A') & '"f

$BIGSTRING2 '"' & (1..V-1-V/2 => 'A') & 'I' & I"I

$BLANKS (. \7_ , '

$MAX LEN INT BASED LITERAL
"2:" & l.V 5 = 0)& "I"

SMAXLENREALBASED LITERAL
"16:" & (1. V- 7 => '0') & "F.E:"

SMAX STRING LITERAL '"' : -- - 'A') & ...

A-i

MACRO PARAMETERS

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$MAXINLEN 200

$ACCSIZE 32

$ALIGNMENT 2

$COUNTLAST 2147483646

$DEFAULTMEMSIZE 1024

$DEFAULTSTORUNIT 8

SDEFAULT SYS NAME M68000

$DELTADOC 2.0**(-31)

$ENTRYADDRESS 16#0#

$ENTRYADDRESS1 16#1#

$ENTRY ADDRESS2 16#2#

$FIELDLAST 2147483647

$FILETERMINATOR

$FIXED NAME NO SUCH FIXED TYPE

$FLOATNAME NOSUCHFLOATTYPE

$FORMSTRING ""

$FORMSTRING2 "CANNOTRESTRICT FILE CAPACITY"

$GREATERTHANDURATION
90000.0

$GREATERTHANDURATIONBASE T A'
- -O00or W ('

$GREATERTHANFLOAT BASE LAST
- - - 1. 8E- 308

$GREATER THAN FLOAT SAFE LARGE
I -OE308

A-2

MACRO PARAMETERS

$GREATER THANSHORT FLOAT SAFE LARGE
_ - 1.OE308

$HIGHPRIORITY 20

$ILLEGALEXTERNALFILENAMEl
:NODIRECTORY: FILENAMEI

$ILLEGAL EXTERNAL FILENAME2
:NODIRECTORY: FILENAME2

SINAPPROPRIATELINELENGTH
-1

$INAPPROPRIATEPAGELENGTH

-1

SINCLUDEPRAGMAl PRAGMA INCLUDE ("A28006D1.ADA")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("IB28006F1.ADA")

SINTEGERFIRST -2147483648

$INTEGERLAST 2147493647

$INTEGERLASTPLUS_1 2147483648

$INTERFACELANGUAGE C

SLESSTHANDURATION -90000.0

$LESS THAN DURTION-BASE FIRST

SLINETERMINATOR ASCII.CR

SLOWPRIORITY 1

SMACHINE CODE STATEMENT
INSTRUCTION' (VAL=>16#4E/1#);

$MACHINE CODETYPE INSTRUCTION

SMANTISSADOG 31

$MAXDIGITS 15

$MAXTNT 214748 6"7

SMAX TNT PLUS 1 2147483648

SMIN TNT -21474,T

A-.3

MACRO PARAMETERS

$NAME BYTEINTEGER

$NAMELIST M68000

SNAKE SPECIFICATIONI HD4O: Ada: acvel .11:cea:X2120A

SNAMESPECIFICATION2 HD4O:Ada:acvcl. 11:cea:X2120B

$NAMESPECIFICATION3 HD4O:Ada:acvcl. 11:ceb:X3119A

$NEG BASED INT 16#FFFFFFFE#

$NEWMEMSIZE 1024

$NEWSTORUNIT 8

$NEWSYSNAME M68000

$PAGE-TERMINATOR ASCII.CR & ASCII.FF

$RECORDDEFINITION RECORD VAL: SHORTINTEGER; END RECORD;

$RECORDNAME INSTRUCTION

STASKSIZE 32

$TASKSTORAGESIZE 2048

$TICK 1.0

$VARIABLEADDRESS FCNDECL.VARADDRESS

$VARIABLEADDRESS1 FCNDECL.VAR ADDRESS1

$VARIABLE ADDRESS2 FCNDECL.VAR ADDRESS2

$YOUR PRAGMA NOSUCHPRAGMA

APPENDIX B

COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

MERIDIAN Ada COMPILER OPTIONS

-fD Generate debugging output. The -fD option causes the
compiler to generate the appropriate code and data for
operation with the Meridian Ada Debugger.

-fe Annotate assembly language listing. The -fe option
causes the compiler to annotate an assembly language
output file. The output is supplemented by comments
containing the Ada source statements corresponding to the
assembly language code sections written by the code
generator. To use this option, the -S option must also
be specified; otherwise, the annotated file is not emitted.

-fE Generate error log file. The -fE option causes the
compiler to generate a log file containing all the error
messages and warning messages produced during compilation.
The error log file has the same name as the source file,
with the extension .err. For example, the error log file
for simple.ada is simple.err. The error log file is
placed in the current working dir.. In the absence
of the -fE option, the error lreg i,,(,,i:m~in is sent to
the standard output stream.

-fI Ignore compilation errors and continue generating code
for legal units vithin the same compilation file.

-fL Generate exception location informatin. The -fL option
causes location information es,,ro fhi' names and line
numbers) to be maintained for intn1l hieJs. This

B-I

COMPILATION SYSTEM OPTIONS

information is useful for debugging in the event that an
"Exception never handled" message appears when an
exception propagates out of the main program. This flag
causes the code to be somewhat larger. If -fL is not
used, exceptions that propagate out of the main program
will behave in the same way, but no location information
will be printed with the "Exception never handled"
message.

-fN Suppress numeric checking. The -fN flag suppresses two
kinds of numeric checks for the entire compilation:
division check and overflow check. These checks are
described in section 11.7 or the LRM. This flag reduces
the size of the code.

-fO Suppress "added to library" and "Generating code for"
information messages normally output by the compiler.

-fR Inhibit static initialization of variables. Although
this option is intended for generating ROMable programs
on other systems, its primary use on the Macintosh is to
enforce a "code-for-data" swap, since global data space
is at a premium on the Macintosh. However, the amount of
global segment space saved by using this option tends to
be small. String literals are always placed in the
global segment, regardless of the setting of -fR. The
-fR option is applicable only in the presence of the -fs
option, which suppresses certain runtime checks.
Normally, the Ada compiler initializes constants or
variables with static data when the following conditions
all occur:

1. Checking is disabled with the -fs option.

2. The initializer expression is static (known at
compile time).

3. The object is a global (in top-level package
specification or body).

If the -fR flag is specified, static initialization is
suppressed for variables (but not for constants);
assignments to each component of a variable are performed
in the code. Note that this alva:: hc'ppen3 in the
absence of the -fs option.

-fs Suppress all checks. The -fs flaz -1,ur1,esses all
automatic checking, including numeric checi-ing. This
flag is equivalent to using pragma 5,ipress on all checks.
This flag reduces the size of the code. and is good for
producing "production quality" code m: f-t benchmarking
the compiler. Note that there i -' - 1 ada option.
-fN to suppress only certain IitiV11i .. i V checks.

B-2

COMPILATION SYSTEM OPTIONS

-fU Inhibit library update. The -fU option inhibits library
updates. This is of use in conjunction with the -S
option. Certain restrictions apply to use of this option.

-fv Compile verbosely. The compiler prints the name of each

subprogram, package, or generic as it is compiled.
Information about the symbol table space remaining
following compilation of the named entity is also printed
in the form "[nK]".

-fw Suppress warning messages. With this option, 'he
compiler does not print warning messages about ignored
pragmas, exceptions that are certain to be raised at
run-time, or other potential problems that the compiler
is otherwise forbidden to deem as errors by the LRM.

-g The -g option instructs the compiler to run an additional
optimization pass. The optimizer removes common
sub-expressions, dead code and unnecessary jumps. It
also does loop optimizations.

-help The -help option is usec to invoke the Meridian Ada help
facility. You must hav Apple's HyperCard application
installed. The -help option must be the first option on
the ada command line.

-K Keep internal form file. This option is used in

conjunction with the Optimizer. Without this option, the
compiler deletes internal form files following code
generation.

-lmodifiers

Generate listing file. The -1 option causes the compiler
to create a listing. Optional modifiers can be given to
affect the listing format. You can use none or any
combination of the following modifiers:

c Use continuous listing format. The listing by
default contains a header on each page. Specifying
-lc suppresses both pagination and header output,
producing a continuous listing.

p Obey pragma page directic- .. ing -1p is only
meaningful if -1c has al- h-, ,.!,rmallv -ic
suppresses all paginarinn. 'h-- 1, ,,ippresses
all pagination e:-rept ".h c ,:Il i, i v I: ,ailed for
within the source file ,ith a py iama pe directive.

s Use standard output. The lis'inp V'," I fault is
written to a file ,ith th- 7am u an i - the source

file and the e:tension .. I.st from

simple.ada. Spccif':ing I .. -s ing file

B-3

COMPILATION SYSTEM OPTIONS

to be written to the standard output stream instead.

t Generate relevant text output only. The listing by
default contains the entire source program as well
as interspersed error messages and warning messages.
Specifying -lt causes the compiler to list only the
source lines to which error messages or warning
messages apply, followed by the messages themselves.

The default listing file generated has the same name as
the source file, with the extension .1st. For example,
the default listing file produced for simple.ada has the
name simple.lst. The listing file is placed in the

current working directory. Note: -1 also causes an

error log file to be produced, as with the -fE option.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies an
alternative name for the program library.

-mbg The -mbg option prepares a compilation unit for use with

the MacsBug (version 6.0 or later) machine-level debugger.
Symbols are truncated to 31 characters.

-mc68020*
The -mc68020 option causes MC68020 processor instructions

to be emitted. Warning: This renders a program
inoperable on any Macintosh systems but those equipped
with the 68020 or 68030 processor.

-mc68881*
This option causes floating point objects passed/returned
by value to be converted to/from 96-bit IEEE format when
calling C functions. The default is to convert to/from
80-bit SANE format. The -mc68881 option should only be
used when the C funtion or functions called are also
compiled with the -mc68881 option.

-N No compile. This option causes the ada command to do a
"dry run" of the compilation process. The command
invoked for each processing ztep 4- r7inted. This is

similar to the -P option. but n- ... ''1 ir-cessing is
performed.

-P Print compile. This option causes the ?da command to
print out the command invoked for each processing step
as it is performed.

B-4

COMPILATION SYSTEM OPTIONS

-S Produce assembly code. Causes the code generator to
produce an assembly language source file and to halt
further processing.

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

MERIDIAN Ada LINKER OPTIONS

-A Aggressively inline. This option instructs the optimizer
to aggressively inline subprograms when used in addition
to the -G option. Typically, this means that subprograms
that are only called once are inlined. If only the -G
option is used, only subprograms for which pragma inline
has been specified are inlined.

-app Application linkage. The -app option specifies that a
"stand alone" program, one that can be run outside of
MPW, from the Finder, is to be created. Applications by
default have file type "APPL". The full word
-application can be used in place of -app.

-c compiler-program-name

Default: (as stored in program library)

Use alternate compiler. The -c option specifies the
complete (non relative) directory path to the Meridian
Ada compiler. This option overrides the compiler
program name stored in the program library. The -c
option is intended for use in cross-compiler
configurations, although under such circumstances an
appropriate library configurati- n 'rmally used
instead.

-creator creator

The -creator option sets the four-hara- tet output file
creator attribute to creatnr. The d'efa,,t rreator is
"AdaV".

-f Suppress main program geneat-i, -1-i I'l -f option

B-5

COMPILATION SYSTEM OPTIONS

suppresses the creation and additional code generation
steps for the temporary main program file. The -f option
can be used when a simple change has been made to the
body of a compilation unit. If unit elaboration order
is changed, or if the specification of a unit is changed,
or if new units are added, then this option should not be
used.

-F Use library routines with inline (MC68881) code. If you
use this option, the MC68881 or MC68882 co-processor must
reside on the machine on which you run the program.

-g Perform global optimization only. The -g option causes
bamp to invoke the global optimizer on your program.
Compilation units to be optimized globally must have been
compiled with the ada -K option.

-G Perform global and local optimization. The -G option
causes bamp to perform both global and local optimization
on your program. This includes performing pragma inline.
As with the -g option, compilation units to be optimized
must have been compiled with the ada -K option.

-I Link the program with a version of the tasking run-time
which supports pre-emptive task scheduling. This option
produces code which handles interrupts more quickly, but
has a slight negative impact on performance in general.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies the name
of the program library to be consulted by the bamp
program. This option overrides the default library name.

-l* Link map. This option writes a link map to standard
output.

-la* Anonymous symbols list. This option must be used with
-1. It incorporates the list of anonymous symbols into
the link map.

-if* Offset list. This option must be . -.. -i h -1. It
incorporates the byte offset of h -hiot module or
entry-point record into the lini mwv

-ma name=alias
Module alias. This option o-errides the nime of an
unresolved module or an entr point -.Irh an alias. This
can be used to force resolution nf in-mptible symbol
name forms at link time.

B-6

COMPILATION SYSTEM OPTIONS

-n No link. The -n option suppresses actual object file
linkage, but creates and performs code generation on the
main program file.

-N No operations. The -N option causes the bamp command to
do a "dry run"; it prints out the actions it takes to
generate the executable program, but does not actually
perform those actions. The same kind of information is
printed by the -P option.

-o output-file-name

Default: file

Use alternate executable file output name. The -o option
specifies the name of the executable program file written
by the bamp command. This option overrides the default
output file name.

-P Print operations. The -P option causes the bamp command
to print out the actions it takes to generate the
executable program as the actions are performed.

-ra [segment=]nn*
Resource attribute. Sets the resource attribute value of
a specified segment (if specified) to nn; if segment is
not specified, sets the resource attribute values of all
but segments 0 and 1 to nn. This option must occur
before -sn or -sg.

-rn* Suppress resource name settings. Resources are otherwise
given the names of the segments.

-S Use SANE library routines. Use this option if you don't
know if you have a co-processor or a co-processor is not
needed.

-sg segment-group[=segmentl,segment2,.... 1*
Group segments. This option places each segment in the
list into the segment named segment-group instead. If
the segment list is omitted, all segments are placed in
segment-group.

-sn old-name=new-name*
Rename segment. This option ritv-n I --cmzit old-name
to have the name ne .;-name.

-ss size*
Segment size. This option o-erridte3 th9 detault 32K
maximum code segment size. The size aiziment must be
larger than 32760. Note:

o -ss does not affect the ma;.i " 4 f the global

B-7

COMPILATION SYSTEM OPTIONS

data segment.

o Specifying a larger segment size can cause link-time
errors in patching short offsets.

o Large segments may not load on Macintoshes with 64K
ROMs.

-t type*
Specify file type. This option specifies the
four-character executable file type attribute. The
default is file type "MPST" for MPW tools (an MPW tool is
created by default) or "APPL" for applications (when -app
is given). The full word -type can be used in place of
-t.

-tool Tool linkage. Create an MPW tool. This is the default
behavior of bamp. MPW tools are programs that run only
under MPW. All of the prograns in the Meridian Ada
software distribution are MPW tools or MPW scripts. MPW
tools have file type "MPST".

-uf file*
List ,inreferenced modules. This option lists any
unreferenced modules in the specified file.

-v Link verbosely. The -v option causes the bamp command to
print out information about what actions it takes in
building the main program.

-W Suppress warnings. This option allows you to suppress
warnings from the optimizer.

-x file*
Create linkage cross-reference. This option places a
segment-ordered cross-reference list of module entry
points into file.

B-P,

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2147483648 .. 2147483647;

type FLOAT is digits 15 range
-1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

type LONG INTEGER is range -2147483648 .. 2147483647;

type SHORT-INTEGER is range -32678 .. 32767;

type BYTEINTEGER is range -128 .. 127;

end STANDARD;

C-I

Appendix F Implementation-Dependent Characteristics

This appendix lists implementation-dependent characteristics of Meridian Ada. Note that there are no pre-
ceding appendices. This appendix is called Appendix F in order to comply with the Reference Manual for
the Aa Pgramnning Lang-aage* (LR M) A NSI/ML-STD--18 !5A whizh states that iis appe.idix L, Iit-,Cd

Appendix F.

Implemented Chapter 13 features include length clauses, enumeration representation clauses, record repre-
sentation clauses, address clauses, interrupts, package system, machine code insertions, pragma inter-
face, and unchecked programming.

F.1 Pragmas

The implemented pre-defined pragmas are:

elaborate See the LRM section 10.5.
interface See section F 1.1.
list See the LRM Appendix B.
pack See section F. 1.2.
page See the LRM Appendix B.
priority See the LRM Appendix B.
suppress See section F.l.3.
inline See the LRM section 6.3.2. This pragma is not actually effective unless you compile/link

your program using the global optimizer.

The remaining pre-defined pragmas are accepted, but presently ignored:

controlled optimize system name
shared storageunit
memorysize

Named parameter notation for pragmas is not supported.

When illegal parameter forms are encountered at compile time, the compiler issues a warning message rather
than an error, as required by the Ada language definition. Refer to the LRM Appendix B for additional infor-
mation about the pre-defined pragmas.

F.1.1 Pragma Interface

The form of pragma interface in Meridian Ada is:

pragma interface (language, subprogram [, "link-name"]);

where:

language is the interface language, onc of the names assembly, builtin, c, or internal. The names
builtin and internal are reserved for use by Meridian compiler maintainers in run-time sup-
port packages.

subprogram is the name of a subprogram to which the pragma interface applies. If link-name is
omitted, then the Ada subprogram name is also used as the object code symbol name. De-

*All future references to the Reference Manual for the Ada Programming Language appear as the LRM.

185 Meridian Ada Compiler User's Guide

Appendix F

pending on the language specified, some automatic modifications may be madc to the object
code symbol name.

link-name is an optional string literal specifying the name of the non-Ada subprogram corresponding to
the Ada subprogram named in the second parameter.

It is appropriate to use the optional link-name parameter to pragma interface only when
the interface subprogram has a name that does not correspond at all to its Ada identifier or
when the interface subprogram name cannot be given using rules for constructing Ada identi-
fiers (e.g. if the name contains a '$' character).

The characteristics of object code symbols generated for each interface language are:

assembly The object code symbol is the same as link-name. If no link-name string is specified, then the
subprogram name is translated to lowercase.

builtin The object code symbol is the same as link-name, but prefixed with one underscore charac-
ter ("_', whether or not a link-name string is specified. This language interface is reserved
for special interfaces defined by Meridian Software Systems, Inc. The builtin interface is
presently used to declare certain low-level run-time operations whose names must not
conflict with programmer-defined or language system defined names.

c The object code symbol is the same as subprogram name. If no link-name string is speci-
fied, then the subprogram name is translated to lowercase. This is the convention used by the
Macintosh C compiler.

internal No object code symbol is generated for an internal language interface; this language inter-
face is reserved for special interfaces defined by Meridian Software Systems, Inc. The inter-
nal interface is presently used to declare certain machine-level bit operations.

In no case are the low-level calling conventions changed; no automatic data conversions are performed on
parameters of interface subprograms except MPW C floating point values. It is up to the programmer to ensure
that calling conventions match and that any necessary data conversions take place when calling interface sub-
programs.

A pragma interface may appear within the same declarative part as the subprogram to which the pragma
interface applies, following the subprogram declaration, and prior to the first use of the subprogram. A
pragma interface that applies to a subprogram declared in a package specification must occur within the
same package specification as the subprogram declaration; the pragma interface may not appear in the
package body in this case. A pragma interface declaration for either a private or nonprivate subprogram
declaration may appear in the private part of a package specification.

Pragma interface for library units is not supported.

Refer to the LRM section 13.9 for additional information about pragma interface.

F.1.2 Pragma Pack

Pragma pack is implemented for composite types (records and arrays).

Pragma pack is permitted following the composite type declaration to which it applies, provided that the
pragma occurs within the same declarative part as the composite type declaration, before any objects or com-
ponents of the composite type are declared.

Note that the declarative part restriction means that the type declaration and accompanying pragma pack
cannot be split across a package specification and body.

The effect of pragma pack is to minimize storage consumption by discrete component types whose ranges
prernit packing. Use of pragma pack does not defeat allocations of alignment storage gaps for some record

Meridian Ada Compiler User's Guide 186

Appendix F

types. Pragma pack does not affect the representations of real types, pre-defined integer types, and access
types.

F.1.3 Pragma Suppress
Pragma suppress is implemented as described in the LRM section 11.7, with these differences:

* Presently, division check and overflow check must be suppressed via a compiler
flag, -fN ; pragma suppress is ignored for these two numeric checks.

* The optional"ON =>" parametername notation forpragma suppress is ignored.

• The optional second parameter to pragma suppress is ignored; the pragma always
applies to the entire scope in which it appears.

F.2 Attributes
All attributes described in the LRM Appendix A are supported.

F.3 Standard Types
Additional standard types are defined in Meridian Ada:

* byteinteger

* shortinteger

* long_integer

The standard numeric types are defined as:
type byteinteger is range -128 .. 127;
type shortinteger is range -32768 .. 32767;
type integer is range -2147483648 .. 2147483647;
type long_integer is range -2147483648 .. 2147483647;

type float is digits 15
range -2.24711641857789e+307 .. 2.2 47 116 4 1857789e+307;

type duration is delta 0.0001 range -86400.0000 .. 86400.0000;

F.4 Package System
The specification of package system is:

package system is
type address is new integer;

type name is (m68000);
systemname : constant name := m68000;

storageunit : constant := 8;
memory_size : constant := 1024;

- System-Dependent Named Numbers

min int : constant := -2147483648;
max int : constant := 2147483647;
max_digits : constant 15;
max mantissa : constant : 31;
finedelta : constant : 2.0 ** (-31);
tick : constant 1.0;

187 Meridian Ada Compiler User's Guide

Appendix F

Other System-Dependent Declarations

subtype priority is integer range 1 .. 20;

The value of system. memory_size is presently meaningless.

F.5 Restrictions on Representation Clauses

F.51 Length Clauses

A size specification (t ' size) is rejected if fewer bits are specified than can accommodate the type. The
minimum size of a composite type may be subject to application of pragma pack. It is permitted to specify
precise sizes for unsigned integer ranges, e.g. 8 for the range 0. .255. However, because of requirements
imposed by the Ada language definition, a full 32-bit range of unsigned values, i.e. 0.. (2**32) -1, cannot
be defined, even using a size specification.

The specification of collection size (t ' storage size) is evaluated at run-time when the scope of the type
to which the length clause applies is entered, and is therefore subject to rejection (via storage error)
based on available storage at the time the allocation is made. A collection may include storage used for rum-
time administration of the collection, and therefore should not be expected to accommodate a specific number
of objects. Furthermore, certain classes of objects such as unconstrained discriminant array components of
records may be allocated outside a given collection, so a collection may accommodate more objects than
might be expected.

The specification of storage for a task activation (t' storagesize) is evaluated at run-time when
a task to which the length clause applies is activated, and is therefore subject to rejection (via storageer-
ror) based on available storage at the time the allocation is made. Storage reserved for a task activation is
separate from storage needed for any collections defined within a task body.

The specification of small for a fixed point type (t' small) is subject only to restrictions defined in the LRM
section 13.2.

F.5.2 Enumeration Representation Clauses

The internal code for the literal of an enumeration type named in an enumeration representation clause must
be in the range of standard. integer.

The value of an internal code may be obtained by applying an appropriate instantiation of un-
checkedconversion to an integer type.

F.5.3 Record Representation Clauses

The storage unit offset (the at staticsimpleexpression part) is given in terms of 8-bit storage units and must
be even.

A bit position (the range part) applied to a discrete type component may be in the range 0.. 15, with 0 being
the least significant bit of a component. A range specification may not specify a size smaller than can accom-
modate the component. A range specification for a component not accommodating bit packing may have
a higher upper bound as appropriate (e.g. 0.. 31 for a discriminant string component). Refer to the inter-
nal data representation of a given component in determining the component size and assigning offsets.

Components of discrete types for which bit positions are specified may not straddle 16-bit word boundaries.

The value of an alignment clause (the optional at mod part) must evaluate to 1, 2, 4, or 8. and may not be
smaller than the highest alignment required by any component of the record. On Macintosh, this means that
some records may not have alignment clauses smaller than 2.

Meridian Ada Compiler User's Guide 188

Appendix F

F.5.4 Address Clauses

An address clause may be supplied for an object (whether constant or variable) or a task entry, but not for a
subprogram, package, or task unit. The meaning of an address clause supplied for a task entry is given in sec-
tion F.5.5.

An address expression for an object is a 32-bit linear memory address of type system. address.

F.5.5 Interrupts

A task entry's address clause can be used to associate the entry with a signal similiar to UNIX. Values in the

range 0. .16 may be specified. At present, only signal 2, representing the Command-Dot keyboard interrupt
(or SIGINT signal), can be activated via the signal mechanism. Value 0 may be specified, but no signal corre-

sponds to value 0, and such an entry is never called via the signal mechanism.

An interrupt entry may not have any parameters.

F.5.6 Change of Representation

There are no restrictions for changes of representation effected by means of type conversion.

F.6 Implementation-Dependent Components

No names are generated by the implementation to denote implementation-dependent components.

F.7 Unchecked Conversions

There are no restrictions on the use of unchecked conversion. Conversions between objects whose
sizes do not conform may result in storage areas with undefined values.

F.8 Input-Output Packages

A summary of the implementation-dependent input-output characteristics is:

" In calls to open and create, theform parameter must be the empty string (the de-
fault value).

" More than one internal file can be associated with a single external file for reading
only. For writing, only one internal file may be associated with an external file; Do
not use reset to get around this rule.

" Temporary sequential and direct files are given names. Temporary files are deleted
when they are closed.

* File I/O is buffered; text files associated with terminal devices are line-buffered.

• The packages sequential io and directio cannot be instantiated with un-
constrained composite types or record types with discriminants without defaults.

F.9 Source Line and Identifier Lengths

Source lines and identifiers in Ada source programs are presently limited to 200 characters in length.

189 Meridian Ada Compiler User's Guide

